—————= =

AD-A470 816 ON BOUNDS FOR THE EFFICIENCY OF BLOCK
COMPARING TEST TREATMEN.. (U)> ILLINOI
CIRCLE DEPT OF MATHEMATICS STATISTIC
UNCLASSIFIED 410 JUN 86 TR-86-@3 AFOSR-TR-86-0576




o~
-f iult\hﬂ\’\‘

" rry < i

s Vi i o]

% £ ‘ R . » > 'x)

2 AN, oy ey ] R0 YXORNI ) D
&

l.‘

.

-

e

16

I
I
I

I

e B
: 2.2
-
2.0
=
l.

I32
F]
36

-

=

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREBU OF STANDARDS 1963

“EEE 4 .

u ru_n—k._&u._.: -
: =
; o —

m . . 5 -
o —_— e =
L4 “ ————— R —
[ — ——
.

:

.

.

.

!

4

)

,.«c

\t

i

-L

2




grosR-TR-86-0576 @

e THE UNIVERSITY OF ILLINOIS
z AT CHICAGO

AD-A170 816

ON BOUNDS FOR THE EFFICIENCY OF BLOCK
DESIGNS FOR COMPARING TEST
TREATMENTS WITH A CONTROL

BY

JOHN STUFKEN

Approved for pudblic release,
distridutionunlioited

YT

(71“ o ?'?N§§
g gl 21988

v [

L2 CORY

P
IR Sy W

DEPARTMENT OF MATHEMATICS,
STATISTICS, AND COMPUTER SCIENCE




e e s e na &

ON BOUNDS FOR THE EFFICIENCY OF BLOCK
DESIGNS FOR COMPARING TEST
TREATMENTS WITH A CONTROL

BY

JOHN STUFKEN

Department of Mathematics, Statistics, and Computer Science
University of Illinois at Chicago ]
Chicago, Illinois 60680

1986
Statistical Laboratory Technical Report No. 86-05

June,

AIR FOTE OFF:~E 0T SCIENTIFIC RESEARCH (AFSC)
uaTICE OF TR NIMITTAL TO LTIC

This technicol =eport hos boen reviewed and i3
~pproved for putlic relerse IAWAFR 190-12.
Histribution (a2 unlimited.

“ATTHEW J. KBFTER

“nief, Techniaal InformationDivision

DTIC

e CTE
Research is sponsored by Grant AFOSR 85-0320

“PISTRIBUTION S1A1EMLIT A
Approved tot public teleasel i

4  Distgibution Unlimitad .




UNCLASSIFIED
SECUMITY CLASSIFICATION OF THIS PAGE

AD,

REPORT DOCUMENTATION PAGE

17086

12 REPCAT SECURITY CLASSIFICATION
UNCLASSIFIED

10. AESTRICTIVE MAAKINGS

20 SECURITY CLASSIFICATION AUTHQRITY
N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

. DECLASSIFICATION/OOWNGRADING SCHEDULE
N/A

unlimited

Approved for Public release; Distribution

4. PERFOAMING ORGANIZATION AEPORAT NUMBEA(S)

5. MONITORING ORGANIZATION REPORT NUMBERI(S)

£ FOSR . TR. YAy 5 g

6a NAME OF PERFOAMING ORGANIZATION
University of Illinois at

B, OFFICE SYMBOL
tif applicabdla)

Ta. NAME OF MONITORING ORGANIZATION

Chicago, IL 60680

Chicago AFOSR/NM ,
6c. ADGRESS (City. State ond Z1P Code) 75. ADDRESS (City, State and ZIP Code)
P.O. Box 4348 Bldg. 410

Bolling AFB, DC 20332-6448

8a. NAME OF FUNDING/SPONSORING
OARGANIZATION

AFOSR NM

8b. OFFICE SYMBOL
(If applicebia)

AFQSR 85-0320

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City. State ond ZIP Code)

Bldg. 410
Bolling AFB, DC

20332-6448

10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK

ELEMENT NO. NO.

11. TITLE (fnciude Secunty Classificetion’

On Bounds for the
for Comparing Test

6.1102F 2304

WORK UNIT

NO.

Efficiency of Block Desi

12. PEASONAL AUTHORS) ~Treatments with a Control.

J. Stufken
13a TYPE OF REPOAT 136 TIME COVERED 14. DATE OF REPORT (Yr, Mo., Dey) 15. PAGE COUNT
Technical FROM T0 June 10, 1986 20

16. SUPPLEMENTARY NOTATION

COSATI CODES
GROUP

SUB. GRA.

18. SUBJECT TERMS (Conanue on reverse .f necessary and 1dentify by dlock numober)
Augmented BIB designs, BTIB designs, A-optimality,
efficiency of a design, control, test treatments

..

19. ASBTRACT Continue on reverse i/ nacessary and identify

For 3 <k <10

of these designs.

y V

by dlock number)

Under the

2k we lisF

In‘this paper wg;studx the class of augmented balanced incomplete block designs, which are
used for comparing a control treatment with a set of test treatments. ’
A-criterion we-esteblish’a condition that enables us to determine the most efficient
augmented design and we suggest some methods to compute a lower bound for the efficiency
the parameters of the most efficient
designs with a lower bound for their efficiency or, if known, mention their optimality.

N f‘.“'. T

20 OISTRISUTION/AVAILAGILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
uncLASSIPIED/UNLIMITED B same as rer. O oric usens O UNCLASSIFIED
225 NAME OF AESPONSISLE INOCIVIDUAL 22b. TELEPHONE NUMBE A 22¢. OFFICE SYMBOL

y 6 3 ) umd‘arltfvi ' (Inciude Aree Codn7 AF’["SZ"' /z/m
rst S s L L0, - e




ABSTRACT

In this paper we study the class of augmented balanced incomplete block

"
designs, which are used for comparing a control treatment with a set of test A
treatments. Under the A-criterion we establish a condition that enables us 5
to determine the most efficient augmented design and we suggest some methods ’%
to compute a lower bound for the efficiency of these designs. For 3 < k < 10, S

.
3

v > k we list the parameters of the most efficient designs with a lower bound

for their efficiency or, if known, mention their optimality.
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1.

INTRODUCTION

Almost 30 years ago Cox [2] suggested that in comparing a control with a set

of test treatments in a proper block design, a good procedure would be to construct

a Balanced Incomplete Block Design (BIBD) based on the test treatments, followed by

augmenting each block of this BIBD with one or more replications of the control.

It is our goal in this paper to investigate this claim and study the efficiency

of designs constructed in this way for the special case that the optimality cri-

terion is the so-called A-criterion.

The remainder of this section will be used to introduce some of the termi-

nology and assumptions and give a more detailed description of our problem.

We want to compare the effect of a treatment, called the control and denoted

by 0, with those of v other treatments, called the test treatments and denoted

To achieve this objective we assume that we can make bk observations,

1,...,v.

k each. The model that we will assume is

b blocks of size

divided over

+ B8, + ¢

Y =p+rT j 15k’

ijk i

where 0 <i<v,1<3j<b, 1<k :-nij' Yijk is an observation in block j

using treatment 1. The index k distinguishes between these observations if there

is more than one, say nij’ replications of treatment i in block j. (If

nij = 0 then there is no observation of the form Yijk') The other parameters

in the model are called the general mean (u), the effect of treatment i (ri),

1 the effect of block j (Bj) and the error term (Cijk)' The assumptions on the

2
error terms are that they have mean O, variance ¢ and that they are uncorrelated.

The objective of the experiment is to estimate the test treatment - control

We assume that this 1s done by using the least

contrasts Ty - 10, i=1,...,v.
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square estimates, which we will denote by ?i - ?O' In order for all these
contrasts to be estimable it is necessary that the used design is connected.

We will therefore use the notation Do(v,b,k) to denote the class of all
connected block designs with b blocks of size k each and based on v test
treatments and a control. Our task is thus to select a design from Do(v,b,k)
and use this to perform the experiment and obtain estimators for Ty 9 from
it. 1In selecting such a design we obviously need a criterion that tells us,

in terms of the estimators %i - ?O derived from it, whether a design is

(comparetively) good or bad. In this context two criteria have prevailed in the

literature. For one of them, MV-optimality, we refer the reader to {5]. The

other one, A-optimality, is defined as follows:

A design d. ¢ Do(v,b,k) is said to be A-better than

1
d. € D_(v,b,k) 4if Tr(M.}) < Tr(M '), where M, and
2 0 d1 - d2 d1
Md are the information matrices for the contrasts
2
T T i=1,...,v, corresponding to d1 and d2

respectively. The design dl is called A-optimal if

the above inequality holds for any d, € Do(v,b,k).

2
Obviously any class Do(v,b,k) possesses at least one A-optimal design. The
only difficulty is how to find one. Several papers have made a contribution

towards a partial solution of that problem (e.g., [3], [4], [6], [7)). The

most general result in this direction is due to Majumdar and Notz [6]. To

state it we will first need two definitions. !




A A R

Definition 1.1 (Bechhofer and Tamhane [1]): A design d ¢ Do(v,b,k) is

called a Balanced Test treatment Incomplete Block Design (BTIBD) if

1. d is incomplete, i.e., no block contains all v + 1 treatments

b

2. with the notation A = I n

: n, ., 0<1 41 <wv, it
i1, jep 133 153 17 72

holds that there are constants AO and Al such that
i

Mg = Mgr lSi<viand Ayp o=, 1<

#1i, < v.
172 2

1

Definition 1.2: A design d € Do(v,b,k) is called a BTIB(v,b,k;t,s) if

1. d is a BTIBD which 1is binary in the test treatments
2. there are s blocks in d which contain exactly t + 1
replications of the control, while the remaining b - s

blocks contain exactly t replications of the control.

The result by Majumdar and Notz [6], can now be stated as:

Theorem 1.1: If V > k > 3 then a BTIB(v,b,k;t,s) is A-optimal in Do(v,b,k)

if
g(t,s) = min{g(x,z) : (x,z) € A}
where g(x,z) := (v-l)z(bvk(k-l) - (bx+z) (vk-v+k) + bx2 + 2xz + z).1
+ ((bx+z)k - (bx’+2xz+z))" 1,
and A= {(x,2): x € {0,1,...,[k/2])-1}, z ¢ {0,1,...,b}

and z > 0 1if x = 0}

([-] denotes the largest integer function).

O A
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Although a very general result that can be used to find A-optimal designs in

many classes of parameters, there are even more classes that remain unsolved by this

Our apparent inability

result, since the needed BTIB(v,b,k;t,s) does not exist.

to determine an A-optimal design for the majority of parameters v, b and k

leads us to the consideration that we should perhaps be less demanding and settle

for a design that, though possibly not A-optimal, performs well under the A-criterion.

We therefore introduce the following definition.

* *
Definition 1.3: The efficiency E(d ) of a desfgn d e DO(v,b,k) is defined

as

min Tr(MSl)
* deDO(v,b,k)
E(d ) = =)
Tr(Md*)

One possible

We will attempt to find designs with an efficiency close to one.

approach could be to search for the best design with respect to the A-criterion

and k and hope that this

in the restricted class of all BTIBD's for given v, b

design has a high efficiency in Do(v,b,k). Although this design will, for most

parameters, indeed have a high efficiency, as will follow from our results, there

are at least two difficulties with this approach. The class of all BTIBD's with

P A D R R

fixed parameters is, generally, still a large class of designs, leaving us with a

difficult combinatorial problem. In addition to this, very little is known as

of yet, about the existence and construction of specified BTIBD's.

Our approach is therefore to look for the best designs in a subclass of the

BTIBD's, and well that of the augmented BIBD's, i.e., those designs as suggested

by Cox. Existence and construction questions are in this class equivalent to those

.........
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of the corresponding BIBD's, and the literature on that subject is quite exten-

N
sive. Moreover since the class is significantly smaller than that of the BTIBD's
. it becomes easier to compare the performance of its members and select the best
v one. The only fear that one might have, though it will prove to be unfounded, 1is
. that the efficiency of the best design in this class is not as high as desired.
. In section 2 we will determine the best augmented BIBD in Do(v,b,k),
E while section 3 will discuss the efficiencies of these designs.
:
. t
. 2. DETERMINATION OF THE BEST AUGMENTED BIBD's.
{
) Throughout the remainder of this paper we will assume that v > k > 3, the E
: conditions as in Theorem 1.1. For a discussion of the case k = 2 the reader is
: referred to [3]. An augmented BIBD is in our notation just a BTIB(v,b,k;t,o0),
¢ and its information matrix and thus its performance under the A-criterijon will,
for fixed v, b and k, be completely determined by t. Thus our problem is
A to find the optimal t. Before stating the main result of this section we
E introduce the following function f(t), defined on the set of nonnegative integers
N 00 if ¢t =20 :
£(t) = ;
1 [(k—t—1)2 +t’ if t=1,2,... i

.
7
d
«
L
[«
.

t(t+l)




) Theorem 2.1. Let tO > 1. Then a BTIB(v,b,k;to,o) is A-better than any other

BTIB(v,b,k;t,0) if

(2.1) £(eg) < v < £ty - D).

Before giving a proof we would like to make three remarks:

Remark 1: The reader should notice that condition (2.1) is completely independent

_: of b. The only way in which b plays a role is in the question of existence of

the desired BTIB(v,b,k;tO,O)-

Notice also that for any fixed v and k there exists a positive

Remark 2:

integer t, such that (2.1) 1s satisfied.

Remark 3: There are instances in which the BTIB(v,b,k;tO,O) from the Theorem

is actually A-optimal in Do(v,b,k). It is shown in [7] that this is the case

if

« s 8 &8 € &

[(k-to-l)2 +1] < v i'jf (k—to)z.

L
. t2 t
0 0

A useful lemma for the proof of Theorem 2.1 is the following:

Lemma 2.1: Let g(x,z) be the function as defined in Theorem 1.1, with the

convention that g(0,0) = oo. If

g(tO,O) < min{g(to—l,O), g(to+1,0)}

g(tO,O) = min{g(t,0)

............
......................

------
A



A simple evaluation gives

2
1 (v-1) 1
) g(t,0) = blk-t) S(k-1) - ¢ T E) :

= o, which implies that

lim g(t,0) = 1lim g(t,0)
t+0 ttk

’ d
. (2.2) TS g(t,0) =0

has a solution on the interval (0,k).

. Similarly, since 1lim g(t,0) = lim g(t,0) = -c0, it follows that (2.2) has
r t+k t+v(k~1) {
a solution on (k,v(k-1)). :

Finally, since 1lim g(t,0) = - and lim g(t,0) = 0 while g(t,0) > O
k-1 t+0 t->-00
if t < - V=2’ it follows that (2.2) has a solution on (-®,0). It is obvious

that (2.2) has at most 3 solutions, so that we can conclude that there is a unique

solution on (0,k). 1If we call this sclution t:1 we know that g(t,0) 1is de-

creasing for 0 < t < t) and increasing for tp <t < k. From g(tO,O) < g(to-l,O)

it follows that t1 > tO - 1, while g(tO,O) < g(t0+1,0) implies that tl < tO + 1. :

The conclusion of the lemma is now obvious. 0

There are two other lemmas which are useful for the proof of Theorem 2.1.

Lemma 2.2: If f(t) > k for t > 1, then v > f(t) if and only if

g(t,0) < g(t+1,0).

Proof: From f(t) > k we obtain

E(e+)k < (k-t-1)% + t,

or equivalently

AT ey
o)
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k2 - (t+1) (e4+2)k + (t+1)2 +t - 0.

As a quadratic equation in k the roots of the left-hand side are k = 1 and

k = t2 + 3t + 1. Since by assumption k > 3, it follows that

(2.3) k Z.tz + 3t + 2.

The statement g(t,0) < g(t+1,0) 1is equivalent to

2 2
1 (v-1) 1 1 (v-1) 1
b(k-t) Cv(k-l) g t] O blketoD) W(k-1) -t =1 Tt

or q(v) > 0,

where
qv) = t(t+1)(k-1)v2 - ((k-l)((k—Zt—l)2 + 2t (k-t)) - (k-2t-1)t(t+1))v

C (k=2t-3) (k=t)t2 + (k=2t-1) (k-t-1)(t+1).

Since q 1is a convex function of v, to prove the lemma it suffices to show that
1. q(1) <0,

1 2
2. qCE?EIIT ((k-t-1)" + t-1)) < 0,

1 2
3. q(ziZiIT ((k-t-1)" + t)) > 0, f

under the assumption that k 3_t2 + 3t + 2. Evaluating q{(l) and making some

simplifications gives

Q(1) = ~(k=1)3 + (6e+1) (k=1)% - (5¢243t) (k=1) + 2t%(t+1)

-(tz—t)(k—l) - (5t+1ee3+12e%43¢e) < 0,

I A

where we used (2.3). This shows 1. Also




----- L L ] P W W Wy vy

1 2 1 2
qC—t—(-t—_’TlT((k—t—l) +t - l)) = t—(trl_)- (-(k-1) (k-2t~1) (k-t"-t-1)

+k-1- (k—2t—1)t(t+1)(t2+t+1)) <0,

again using (2.3). Hence 2. follows.

Finally a(rarpy((k-t- 12 4+ 1)) = (k=2t-1)(k-t?-t-1) > 0 by (2.3). This

t(t+1

shows 3. and concludes the proof of Lemma 2.2.

Lemma 2.3: If t is the smallest positive integer such that f(t) < k then

g(t,0) < g(t+1,0).

Proof: Notice first that the existence of a t as in this lemma is obvious. We

have the inequality

f(t) < k < £(t-1),
which is equivalent to
(2.4) t™+t <k <t + 3t +1.

With q(v) as in the proof of Lemma 2.2 we have to show that, assuming (2.4),
q(v) > 0 for any v > k. Thus, again using the convexity of q(v), it suffices
to show that

1. q(k) > 0,

2. q(1) < q(k).

To show this we will distinguish between two cases. K

Case 1: t

Case 2: t




-10-

Case 1 is easy, since (2.4) tells us that 3 < k <5 and

q(k) = —k4 + 7k3 - 8k2 - 13k + 19, which is indeed positive for 3 < k < 5. This
shows 1 for this case. Also q(1) < 0 < q(k) 1is easy to verify for this case.

So let us turn to Case 2, t > 2.

After some simplification we obtain

q(k) = -k* + (£243e+3)13 - 2(e41) %P - 23462444 1)K

+ 4t + 9t 4 5¢ 41,

It can be shown that considering this as a function of k on the interval

[t2+t, t2+3t+1] we have a concave function (use t > 2), implying that the

minimum value occurs at one of the endpoints k = t2 +t or k= t2 + 3t + 1.

Evaluating at these two points gives the values
2t7 + 7t6 + StS - 9t4 - 11t3 + 2t2 + 4t + 1
and

2t2(t+l)

respectively. Since the latter one is the smaller of the two it follows that
q(k) 3_2t2(t+1) > 0 under the assumption of (2.4). This shows 1.

For 2. we see

—(k=1)2 + (4t+1) (k-1)% = (5t243t) (k-1) + 2t2(t+1)
2

q(1)

—(k=1) ((k-1-(2t41))% 4 2 = £ = 1) + 2t2(t+1)

A

262 (t+1) < q(k).

<

This concludes the proof of Lemma 2.3. 0




Weaponed with these three lemmas we are ready to prove Theorem 2.1.

' Proof of Theorem 2.1: First observe that if d is a BTIB(v,b,k;t,0), then

o2 Tr(Mgl) = kv g(t,0).

Hence we have to show that

g(to,O) = min{g(t,0), t = 1,...,k~1}.

By Lemma 2.1 it suffices to show that

3 (2.5) g(t,0) < min{g(ty-1,0), g(ty+1,0)}.

We know that

- (2.6) f(to) <v < f(to—l).

If f(co) > k, (2.5) follows immediately from (2.6) and Lemma 2.2.

1f f(to) < k, then since v > k it follows from (2.6) that to is the

. smallest positive integer t with f(t) < k. Hence by Lemma 2.3 we obtain

g(to,O) < g(to+1,0). Since v < f(to-l), Lemma 2.2 gives us that

g(to,O) < g(to—l,O). Combining these two gives that (2.5) holds and concludes

. the proof of Theorem 2.1. a

There are two different approaches in which Theorem 2.1 can be used. The

first would be to specify the class Do(v,b,k) from which we like to choose a

design. Then we have to find the unique value of t for which

f(t) < v < f(t-1).
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The desired augmented BIBD will exist if a BIBD with b blocks of size k - t based
on Vv treatments exists. A disadvantage of this approach is that the existence
question is answered at the very end.

This can be avoided if we start with a BIBD, say with b blocks of size k
each based on v treatments, and try to augment this by t replications of the
control. This would be a design in Do(v,b,k+t), and it is the best augmented

BIBD in this class if

1
t(e-1)

1

2.7 t(t+l

Ty ( (k- 1) +t) <v< ; (k +t-1)

where for t = 1 the upper bound is ™.
It is easy to show that there is always at least one value of t that satis-
fies this inequality, and thus that any BIBD can be embedded in an augmented BIBD

which is the best augmented BIBD in its class.

Example 2.1: If we start with a symmetric BIBD based on 1l treatments and block
size 5, it is easy to verify that (2.7) is satisfied for t =1 and t = 2,

Hence a BTIB(11,11,6;1,0) is the best augmented BIBD in D0(11,11,6), while a
BTIB(11,11,7;2,0) 1is the best augmented BIBD in DO(11,11,7). In addition it can

be shown that .991 and .985 are respective lower bounds for their efficiencies.

We return to this in the next sectiomn.

A disadvantage of this second approach is that we do not know a priori what

the block size is of the design that we will eventually wind up with,

PG 00, S AN A L T R e T T L T
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3. BEST AUGMENTED BIBD's AND LOWER BOUNDS FOR THEIR EFFICIENCY FOR 3 < k < 10.

The efficiency of a design in its class as given in Definition 1.3 would not
be very useful if we could not obtain a good lower bound for the expression in
the numerator.

One such lower bound can easily be shown to be the following: ;

min o2 Tr(MSl)_i kv min{g(x,z) : (x,z) € A},
deDo(v,b,k)
A where g(x,z) and A are as defined in Theorem 1.1. This bound could indeed

be used to obtain lower bounds for the efficiency of a design. It is however
slightly easier for computational purposes, to use the following inequalities,

which can be found in [7].

X (3.1) If v > (k-l)2 + 1 then min{g(x,z) : (x,2) € A} > g(O,zo)
) _ (v-1) (v41) - (v+1) ¥
- where zo = bk v (v=3)

3.2) 1f % (k-2)2 + 3) <v < (1<-2)2 then 3
. min{g(x,z) : (x,z) € A} 3_g(1,zl), where

(k=1) (k=2) (v=1) ((k=3) ((v*+1) (k=1)=2)) 172 = (k=3) (v+k=3) ((v+1) (k=1) - 2)
(=3) ((vF1) (k=1)=2) ((v=3) (k=3) - 2)

2z, = b(k-1)

) Using these bounds we compiled the following list of best augmented BIBD's with
their efficiencies. 1In each case a BTIB(v,b,k;t,o) 1is the best augmented BIBD
provided that a BIBD with b blocks of size k - t based on v treatments

exists. A lower bound for the efficiency is given, except in those cases where

the design is known to be A-optimal.
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THE BEST BTIB(v,b,k;t,0) AND A LOWER BOUND FOR ITS EFFICIENCY E.

Take t =1 for any v > 3,
(1) If v =

(ii) If v >

(for v

T RN ra.v.m{
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5, E Z.(2v-1)(v—1 + (v+1)

or 4 the design is A-optimal.

1/2)2

3v3

5, b =10 the design is A-optimal).

Take t =1 for any v > 4.

(1) If v =

(for v

4, E > .9999

4, b =4s, s =1,...,5 the design is A-optimal).

(i1) If 5 <v <9 the design is A-optimal.

(11i) If v > 10, E >

1/2.2

Bv-1)(v-1 + (v+1)™'")

v (v+1)

Take t =1 for any v > 5.

(i) If Sivig,Elm—

g(1 921)
, where

g(x,z) = (V-1)2(20V ~ (x+z) (4v+5) + %% + 2xz + z)_1

_ 12(v-1) (2v+1)

+ (5(x+z) - (x2 + 2xz + z))-l, and
Y2 (y42) (avs2)

(for v

(2v+1) (v-4)

9, b=18s, s =1,...,5 the design is A-optimal).

(i1) If 10 < v < 16 the design is A-optimal.

(4v-1) (v-1 + (v+1)1/2)2

(11i) If v > 17, E > > .
Sv© (v+2)
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k=6 Take t=1 1if v > 9, take t =2 {if 6 <v < 8,
g(l’zl)
(1) If 6iv§_8,Ei—gm)—,where
_ 2 2 -1
‘ g(x,z) = (v=1)7(30v - (x+2)(5v+6) + x° + 2xz + z)
; + (6(x+z) ~ (x*42xz+2)) 7L, and
1/2
z. =5 20(v=-1) (3(5v+3)) = 3(v+3) (5v+3)
1 3(5v+3) (3v-11)
g(l)zl)
(ii) If 9 <v <16, E :m)— , where g and z, are
as defined in (i) above.
(for v =16, b = 48s, s = 1,...,6, the design is A-optimal).
3 (11i) If 17 <v < 25 the design is A-optimal.
d
. 1/2.2
(v) If v > 26, E > (5"’1)("‘% + (otl) )
6vT (v+3)
- k=7: Take t=1 if v > 13, take t =2 if 7 <v < 12.
(1) 1f 7_<_V_<_12,E_>_g(—2—,—0~j— , Where
2 2 ~1
g(x,2) = (v-1)"(42v - (x+z)(6v+7) + x° + 2xz + 2)
+ (7(x+z) - (x2 + 2%z + z))‘l, and
_ 4 150-1) (6wt HZ < (vra) ovea)
% (6v+4) (2v=7)
g(lazl)
(i1) If 13 <v <25, E 3—8—(—1—,?)-)— , where g and z, are as
defined in (i) above.
(for v =25,b=100s, s = 1,...,7, the design is A-optimal).
(111) If 26 < v < 36 the design is A-optimal.
1/2
(1iv) If v>37, E> (6v-1) (v~1 + (v+1) / )2
i 14 i .
7v2(v+4)
‘," PN "-- ';.. ''''' AR S I i "q'_q'.a'_.‘..'.'.'_.'.-,~J.-,-.-.‘. --------- - - "N ote L.
A N AR R et oy .\..;\.\\ !-\~-_- '._q‘ ..-.,qf¢".\’~‘.~..u)\.‘~..\',;..n )
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k=8: Take t =1 if v > 19, take t =2 if 8 < v < 18.

(1) If v=8 or 9 the design is A-optimal.

(ii) If 10 <v < 18, E 3-§?5767" , where
B 2 2 -1
g(x,z) = (v-1)7(56v - (x+2)(7v+8) + x~ + 2xz + z2)
+ (8(x+z) - (x2 + 2xz + z))—l, and
.5 20-D 6N 5wts) (7vis)
%1 5(7v+5) (5v-17)
(iii) If 19 < v < 36, E :'ETTTBS—- , where g and z2;s are as

defined in (ii) above.

(for v=236,b=180s, s =1,...,8, the design is A-optimal).

(iv) If 37 <v < 49 the design is A-optimal.

(7v=1) (v~1 + (v+1)1/2)2

8v2 (v+5)

(v) If v > 50, E >

k =9: Take t =1 if v > 25, take t = 2 if 9 < v < 24,

(1) If v=29, E> .9999

(for b = 36 the design is A-optimal).

(i1) If 10 < v <12 the design is A-optimal.
g(1l,2;)

(iii) If 13 m

| A

v <24, E > , where

(v=1)2(72v - (x+2) (8v+9) + x° + 2xz + 2) %

g(x,z)

+ (9(x+z) - (x2 + 2xz + z))-l, and

_ 112(v-D) BN 2 - 12(v46) (4vr3) :
% 3(4v+3) (3v-10) :
(for v =13, b = 26 the design is A-optimal). :
. ., G . 1- .-\- LR SR ._;’..- ._ -.'(-.' .."'..‘ el .‘-,.“-. Co .~..\;”."(..;.-_"-..‘-'__.. '.-v.-,.. . K ‘;. S .-. Wt _.,-.-. _‘... . .‘ g E .
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(iv) If 25 - v 9, ., abere o oand z, are

— - ’ | 1

5

as defined in (iii) 4buve.

(for v = 49, b = 2945, 5 = 1,...,9, the design is A-optimal).
: () If 50 < v < 64 the design is A-optimal.
1/2.2
(vi) If v > 65, E > (8v-1)(v-1 + (v+1) / )
B - 9V2(v+6)

k = 10: Take t =1 if v > 33, take t =2 {f 10 < v < 32,

3(2,22)
(1) 1f 10_<_Vi12, Ezm,where
g(x,z) = (v-1)2(90v ~ (x+2) (9v+10) + x2 + 2xz + z)-l
; + (10(x+z) -~ (x2 + 2xz + z))-l, and

_ S04(v=1) (5¢9v+5)) /2 _ 40(3v+5) (2v+5)
%2 5(9v+5) (5v-19)

(ii) If 13 < v < 16 the design is A-optimal.

| A

:; g(l’zl)
3 (111) If 17 <v < 32, E 2 5(Z6) » vhere g is as

defined in (i) above, and
| g 12-1) (10w < 7(o47) (9vt7) ‘
A 1 7(9v+7) (7v-23) : :
‘: g(l’zl)

(iv) If 33 <v <64, E Z-E?ItﬁT— , where g and z, are

defined as in (iii) above.
. (for v = 64, b = 448s, s = 1,...,10, the design is A-optimal).
Y (v) If 65 < v < 81 the design is A-optimal.
C. 1/2 2
: (vi) If v > 82, E> (9"'1)("'12+ (vtl) 1)
4 10v- (v+7)
!
()

"

l
‘v
¢l
«
L]
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The bounds for the efficiencies are generally extremely good. The only

exception to this is for extreme large values of v, which should not come as
a surprise. But even there the values seem to be acceptable, unless k 1is very

small. To illustrate this we give some of the values for large v explicitly.

v = 100 v =500 | v = 1000 -'
k=3 |E> .7888 | E > .7241 | E > .7077
k=6 |E>.902 | E> .9003 | E > .8823 ;
k=10 (E > .9991 | E> .9648 | E > 9492
)

S N N TP R
et ‘.- o ) '-\~' A
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4. DISCUSSION AND CONCLUSION.

Theorem 2.1 provides us with a tool to determine the parameters of the
best augmented BIBD, either in a fixed class Do(v,b,k) or, when starting
with a BIBD, in one or more classes of the form Do(v,b,k+t). These designs
are very appealing for at least two reasons. As members of the class of
BTIB designs they possess all the desirable features of designs in this class.
In addition, much is known about questions concerning their existence and
construction, since these questions are equivalent to those of the correspond-
ing BIBD's, a subject that has received its share of attention in the literature.

Since using the best augmented BIBD gives, except for some extreme cases,
a very high efficiency (in fact many of the listed designs in section 3, al-
though not marked as such, may verywell be A-optimal) we strongly recommend

the use of these designs.
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